out := fun P A B => A<>P /\ B<>P /\ (Bet P A B \/ Bet P B A)
Inter := fun X P Q R S =>
P <> Q /\ R <> S /\ Col X P Q /\ Col X R S /\
((exists Y, Col Y P Q /\ ~ Col Y R S) \/ (exists Y, ~ Col Y P Q /\ Col Y R S))
forall A B C P, A<>P → B<>P → C<>P → Bet A P C → (Bet B P C ↔ out P A B)
forall A B P, out P A B → (A <> P /\ B <> P /\ exists C, C <> P /\ Bet A P C /\ Bet B P C)
forall A B P, (A <> P /\ B <> P /\ exists C, C <> P /\ Bet A P C /\ Bet B P C) → out P A B
forall A B P, out P A B → Col A P B /\ ~ Bet A P B
forall A B P, Col A P B /\ ~ Bet A P B → out P A B
forall P A, A <> P → out P A A
forall P A B, out P A B → out P B A
forall P A B C, out P A B → out P B C → out P A C
forall A B C R X Y,
R <> A → B <> C → out A X R → Cong A X B C → out A Y R → Cong A Y B C → X=Y
forall A B C R, R <> A → B <> C → exists X, out A X R /\ Cong A X B C
forall P A B, out P A B → le P A P B → Bet P A B
forall P A B, out P A B → Bet P A B → le P A P B
forall P Q S X, P <> Q → S <> P → Col S P Q → (Col X P Q → Col X P S)
forall P Q S X, P <> Q → S <> P → Col S P Q → (Col X P S -> Col X P Q)
forall P Q A B, P <> Q → Col P Q A → Col P Q B → Col P A B
forall P Q A B, P <> Q → Col P Q A → Col P Q B → Col Q A B
forall A B C D P Q,
~ Col A B C → C <> D -> Col A B P → Col A B Q → Col C D P → Col C D Q → P = Q
forall A B, A<>B → exists C, ~ Col A B C
forall A B C D E, Bet A B C → Bet D B E → Cong A B D B → Cong B C B E → Cong A E C D