forall A B : Point, Cong A B A B
forall A B C D : Point, Cong A B C D → Cong C D A B
forall A B C D E F : Point, Cong A B C D → Cong C D E F → Cong A B E F
forall A B C D, Cong A B C D → Cong B A C D.
forall A B C D, Cong A B C D → Cong A B D C
forall A B C D, Cong A B C D → Cong B A D C
forall A B : Point, Cong A A B B
forall A C D, Cong A A C D → C=D
OFSC := fun A B C D A' B' C' D' =>
	      Bet A B C /\ Bet A' B' C' /\
	      Cong A B A' B' /\ Cong B C B' C' /\
	      Cong A D A' D' /\ Cong B D B' D'.
 forall A B C D A' B' C' D', 
OFSC A B C D A' B' C' D' → A<>B → Cong C D C' D'
 forall A B C A' B' C',
 Bet A B C → Bet A' B' C' →
 Cong A B A' B' → Cong B C B' C' → Cong A C A' C'
(voir l4_3)
forall Q A B C x y,
 Q ≠ A →  Bet Q A x → Cong A x B C →  Bet Q A y → Cong A y B C →  x=y.